CHARACTERIZATION AND PROCESS DEVELOPMENT OF CYANATE ESTER RESIN COMPOSITES

B. J. Frame
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

44th International SAMPE Symposium and Exhibition

May 23-27, 1999 Long Beach, California

OBJECTIVES

- Investigate the effects of the cure cycle and process environment on cyanate ester resin and composite properties
- Develop a high-strength hoop-wound composite by the wet-filament winding method
 - Toray T1000G carbon fiber
 - YLA RS-14A (or RS-14) cyanate ester resin

CYANATE ESTER RESINS

Cyanate esters are a family of monomers and prepolymers which contain reactive ring-forming cyanate (- O - C \equiv N) functional groups

- Conversion, or curing, occurs via cyclotrimerization to form three-dimensional triazine ring connecting units
- Additive reaction
- Exothermic
- Thermoset polycyanurate plastics

ADVANTAGES OF CYANATE ESTER RESINS

- Low outgassing
- Low moisture absorption
- High thermal stability
- Radiation resistant
- Tough/resistant to microcracking caused by thermal cycling
- Low dielectric constant and low dissipation factors
- "Zero" net volume change with cure
- Processing flexibility
 - Prepreg lamination
 - Wet-filament winding
 - Resin transfer molding

CYANATE ESTER RESIN

- YLA RS-14A (or RS-14) resin
 - RS-14A and RS-14 resins are identical with the exception that the RS-14 resin contains minute quantities of zirconate coupling agent.
 - RS-14 product discontinued during course of this study and replaced with the RS-14A formulation.
- Low viscosity
 - 0.2 to 0.1 Pa•s between 70° to 85°C
 - Excellent wet-winding resin

PROCESS VARIABLES

- Time-temperature profile (cure cycle)
- Thermal cycling
- Resin exposure to humidity during processing
- Resin exposure to air during cure

CURE CYCLE VARIABLES

- Precure temperature
 - $-138^{\circ}\text{C} (\sim 280^{\circ}\text{F})$
 - $-193^{\circ}\text{C} (\sim 380^{\circ}\text{F})$
 - No precure step (ramp directly to postcure temperature)
- Postcure temperature
 - $-250^{\circ}\text{C} (\sim 480^{\circ}\text{F})$
 - $-265^{\circ}\text{C} (\sim 510^{\circ}\text{F})$
- Multiple precure and/or postcure cycles
 - Pertinent to fabrication of "thick" composite cylinders that are wound and cured in increments ("stages")

DSC ANALYSES

DSC analyses were conducted to determine the effects of ramp rate, precure and postcure temperature on the resin's ultimate $T_{\rm g}$ and cure profile

- Cure Cycle
 - 138°C (~280°F) versus193°C (~380°F) precure step
 - No precure step (ramp directly to postcure temperature)
 - 250°C (~480°F) versus 265°C (~510°F) postcure step
- Ramp rate
 - 1°, 2°, and 4°C/min ramp rate to temperature
- Dwell times
 - 3 h precure
 - 4 h postcure

DSC data for cyanate ester resin

Resin	135°C		190°C		250°C		265°C		T _g	Enthalpy
	Ramp	Hold	Ramp	Hold	Ramp	Hold	Ramp	Hold	оC	J/g
	oC/min	h	⁰C/min	h	⁰C/min	h	⁰C/min	h		
RS-14							1	4	253	-774
							2	4	256	-624
							4	4	255	-519
							4	4	253	-539
					1	4			256	-616
					2	4			254	-536
					2	4			256	-538
					4	4			255	-472
	1	3					1	4	253	-
	1	3					1	4	255	-
	4	3					1	4	254	-
			1	3			1	4	254	-
			4	3			1	4	256	-
			4	3			1	4	256	-
RS-14A							2	4	270	-570
							2	4	270	-598

DSC RESULTS

• T_g the same for all cure cycles investigated

- RS-14: 253° to 256°C

– RS-14A: 270°C

- T_g the same for samples postcured at 250°C or 265°C
 - long (4 h) dwell time enables cyclotrimerization to proceed to same degree of conversion for both postcure temperatures

RESIN PANELS

Resin panels were fabricated and tested to determine effects of cure cycle and process environment on cyanate ester resin's properties

- Cure cycle
 - 138°C versus 193°C precure step
 - No precure step (ramp directly to postcure temperature)
 - − 250°C versus 265°C postcure step
- Process environment
 - air
 - inert (nitrogen)
- Thermal cycling to precure or postcure temperature
 - 3 to 4 cycles

RESIN PANEL EVALUATION

- Tensile properties
 - strength
 - modulus
 - elongation
- T_g
 - DMA
 - Line-fit intercept method using storage modulus (G')
 curve
- Density

RESIN PANEL RESULTS

Comparable RS-14A and RS-14 resin properties were obtained for all of the process cycles conducted a single time (non-thermally cycled) and in a nitrogen environment

- Tensile properties
 - 82 to 90 MPa strength
 - 2.6 to 3.0 GPa modulus
 - 4.1 to 5.5% elongation
- T_g
 - RS-14 T_g : 242° to 255°C
 - RS-14A T_g: 262° to 263°C T_g
- Density
 - $\sim 1.20 \text{ g/cm}^3$

AIR VS INERT (N₂) CURE

- Panels exposed to air at elevated temperatures during cure had significantly lower tensile strengths and elongations than panels processed in nitrogen
 - Dark brown-black layer at panel surface
 - Dark layer hypothesized to act as flaw to promote premature tensile failure in specimens

AIR VS INERT (N₂) CURE (cont'd)

- Properties of panel thermally cycled to 193°C precure temperature in air similarly degraded even though later postcured in nitrogen
 - Slight darkening of panel surface with each thermal cycle
 - Reduced tensile strength and elongation
 - -10° to 20° C reduction in T_g
- Properties of panel thermally cycled to 138°C precure temperature in air unaffected
 - No surface reaction (coloration) evident

THERMAL CYCLING

No significant change in resin properties with multiple precure and postcure cycles for panels that were maintained in a nitrogen environment

- Additional postcure cycles to either 250° or 265°C did not appreciably change resin $T_{\rm g}$
- Multiple thermal cycles to 265°C postcure temperature in nitrogen significantly darkened resin with each cycle
 - Coloration visible throughout entire thickness of resin panel

RS-14 and RS-14A Resin Tensile Strength Versus Process Cycle

HUMIDITY EXPOSURE

A study was conducted to characterize the effects of humidity (moisture) exposure during processing on the cured cyanate ester resin properties

- Simulate wet-filament winding environments
- Establish "thresholds" or limits at which the cyanate ester resin's properties are compromised by moisture exposure

RESIN PRECONDITIONING

- Uncured resin samples exposed to a range of humidity levels in an environmental chamber
 - -80° C
 - -2, 4, and 8 h exposures
 - Continuous stirring
- Resin evaluation
 - Water content (Karl-Fischer titration)
 - $-T_{g}(DSC)$
 - Cured resin properties
 - Tensile strength, modulus and elongation
 - T_g (DMA)

Effects of humidity exposure (80°C) on cyanate ester resin properties

Resin	Ехро	osure	Karl-Fischer	DSC		DMA		
	RH	Time	Water	Tg	Strength	Modulus I	Elongation	T_g
	%	h	%	٥C	MPa	GPa	%	٥Č
RS-14	Co	ntrol	0.02	256	89.8	2.7	5.8	252
		_						
	20	8	0.03	252	85.2	2.8	4.8	252
	40	2	0.16	241	91.4	2.7	5.9	243
	40	4	0.21/0.15	243	89.6	2.7	5.3	237
	40	8	0.03/0.02	247	90.4	2.8	5.5	248
	40	O	0.03/0.02	271	30.4	2.0	0.0	240
	60	2	0.37	232	87.3	2.8	4.8	233
	60	4	0.38/0.26	224	83.9	2.8	4.4	227
	60	8	0.45	201	(Extensive	bubbles and voi	ds in panel)	206
	00	0	0.50	000	07.0	0.7	4.0	000
	80	2	0.50	223	87.0	2.7	4.9	236
	80	4	0.52	212	88.7	2.8	5.0	231
	80	8	1.42	189	(Extensive	bubbles and voi	ds in panel)	199
RS-14A	Coi	ntrol	0.01	270	88.4	2.6	5.5	262
						-		
	30	8	0.01	264	88.5	2.7	5.2	259
	40	4	0.14	261	86.4	2.7	5.1	258
	40	8	0.15	241	89.5	2.8	5.2	247
	50	4	0.21/0.28	242	91.1	2.7	5.3	251
	50	8	0.16/0.31	235	88.3	2.8	5.1	238
	00	J	3.10,0.01	200	00.0	2.0	0.1	200
	60	4	0.28	242	93.2	2.8	5.1	240
	70	4	0.31	243	(Extensive b	ubbles and cra	cks in panel)	238

HUMIDITY EFFECTS ON RESIN

- Significant T_g reductions with increasing humidity exposure and water uptake
 - Slight T_g reductions after 8 h at 30% RH
 - Greatest T_g reductions with exposures greater than 40% RH
 - Water content increases from 0.01 to 0.02% (as-received) level to above 0.1% after 2 h at 40% RH
- Large bubbles in panels cast from resin preconditioned to 60% and 80% RH
- Tensile properties unaffected by high humidity exposures!

CARBAMATE FORMATION

The degradation of thermal properties is attributed to the reaction of the cyanate function with water (hydrolysis) leading to the production of a carbamate species

- Carbamates decompose above 190°C, yielding an amine and CO₂
- CO₂ evolution can lead to bubbles and voids in resin and composite samples
- Triazine ring formation process interrupted
 - Reduced cyanate functionality due to carbamate formation
 - Amine resulting from carbamate decomposition can react with another cyanate group, leading to a linear species with reduced properties (lower T_g)

COMPOSITE PROCESS TRIALS

Composite process trials were conducted to investigate the effects of cure cycle and process environment on composite mechanical properties

- Cure cycles (extension of resin process trials)
 - 138°C and 193°C precure step
 - No precure step (ramp directly to postcure temperature)
 - 260° or 265°C postcure step
 - 3 h precure & 4 h postcure
- Air versus inert atmosphere cure
- Thermal cycling (on mandrel) during manufacture
 - 3 to 4 cycles
 - Pertinent to fabrication of "thick" cylinders that are wound and cured in stages

 OTTIL- Bringing Science to Life

COMPOSITE CYLINDERS

- All-hoop wet-filament wound composite
- ~610 mm ID x 3.18 mm wall thickness
- T1000G carbon fiber
 - Single lot
 - 6,577 MPa (954 ksi) fiber strength
 - Lot average measured by ORNL
- YLA RS-14A or RS-14 resin

CYLINDER EVALUATION

- Ring (hoop) tensile strength and modulus
 - "Split-D" method based on ASTM D2290
 - Extensometer-measured "D" separation (modulus)
- Interlaminar shear strength
 - ASTM D2344
- Transverse flexure strength
 - ASTM D790
 - OD surface in tension
- Composition
 - Calculated from composite density (ASTM D792) and weight percent resin and fiber contents (nitric acid digestion)

Composite process trial results

Process Environment	Air		Inert (N ₂)								
Precure Postcure Resin	193°C 265°C RS-14	193°C 3 x 265°C RS-14	138°C 260°C RS-14	4 x 138°C 260°C RS-14	138°C 260°C RS-14A	4 x 138°C 260°C RS-14A	193°C 260°C RS-14A	4 x 193°C 260°C RS-14A	193°C 4 x 260°C RS-14A	None 260°C RS-14A	None 4 x 260°C RS-14A
Ring Tensile											
Strength (MPa)	4352.6	3911.4	4269.9	4560.8	4421.6	4409.2	4376.1	4640.8	4301.6	4524.3	4449.2
Modulus (GPa)	225.4	223.3	225.5	225.4	229.6	226.8	225.4	227.5	227.5	228.9	228.9
SBS Strength (MPa)	65.2	67.2	66.5	55.6	59.9	65.0	67.2	65.7	65.7	66.8	69.1
Transverse Flexure Strength (MPa)	97.1	86.9	74.4	68.9	71.6	71.4	80.3	74.0	81.9	78.9	73.1
Composition											
Density (g/cm ³)	1.6607	1.6667	1.6575	1.6569	1.6611	1.6646	1.6648	1.6658	1.6648	1.6663	1.6663
Volume % Fiber	78.4	79.6	78.4	78.3	78.6	78.7	79.2	79.0	79.2	79.5	79.5
Volume % Resin	21.5	20.1	21.1	21.3	21.2	21.4	20.6	21.0	20.6	20.3	20.3
Volume % Voids	0.1	0.3	0.5	0.4	0.2	-0.1	0.2	0.0	0.2	0.2	0.2

Notes:

- (1) Times at process temperature are 3 h for the precure segment and 4 h for the postcure segment.
- (2) Cylinders that received additional precure or postcure cycles are indicated by the "number of cycles x" designation.

THERMAL CYCLING IN AIR

Cylinder cycled to postcure temperature in air had significantly lower ring tensile strength than cylinders cycled in an inert atmosphere

- Black discoloration of OD surface resin for air-processed cylinders (versus amber-brown tint of N₂- processed cylinders)
- Ring tensile strength reduction attributed to reduction in cyanate ester resin tensile properties as a result of reaction with air and/or moisture at elevated temperature
- Comparable to results from resin panel study
- Increase in transverse flexural strength

PROCESS TRIAL RESULTS

There is a broad process envelope for processing composites that are wet-filament wound with RS-14 and RS-14A resin

- Comparable composite properties achieved for all process cycles conducted in an inert atmosphere
- No affect on composite properties from additional precure and postcure cycles when conducted in an inert atmosphere

COMPOSITE COMPOSITION

The cylinders were wound reproducibly and have nominally the same compositions

• Density: $\sim 1.66 \text{ g/cm}^3$

• Fiber content: 78.3 to 79.6 vol.%

• Voids: < 0.5 vol.%

COMPOSITE PROPERTIES

- Ring tensile strength
 - 4270 to 4641 MPa
 - Individual ring strengths above 4826 MPa (700 ksi)
 - Highest fiber strength translations: ~89%
- Ring tensile modulus
 - 223 to 230 GPa

COMPOSITE PROPERTIES (cont'd)

- Interlaminar shear strength
 - 56 to 69 MPa
- Transverse flexure strength
 - 69 to 82 MPa

ELEVATED TEMPERATURE PROPERTIES

Test Temperature	20)°C	60)°C	135°C		
Stat 17 Result	Average	B-Basis*	Average	B-Basis*	Average	B-Basis*	
Ring Tensile	-	-	4508.4	4232.7	4242.3	4051.3	
Strength (MPa)			(2.2)		(1.4)		
Modulus (GPa)	-	-	224.1	-	224.1	-	
SBS Strength	57.4	51.0	56.7	49.7	50.9	44.7	
(MPa)	(4.7)		(4.3)		(4.4)		
Transverse Flex.	75.2	62.9	69.4	60.4	65.5	55.2	
Strength (MPa)	(5.3)		(5.1)		(6.0)		

^{*} B-Basis value is from two-parameter Weibull calculation

^() number in parenthesis is percent coefficient of variation

SUMMARY

Process trials were conducted to determine the effects of the cure cycle and environment on cyanate ester resin and composite properties

- YLA RS-14A resin has a broad process envelope provided that the cure is conducted in an inert atmosphere
- Exposure to air at elevated temperatures produces a black reaction layer that reduces resin tensile strength and elongation
- Exposure to moisture prior to cure reduces the resin's glass transition temperature

SUMMARY (cont'd)

High fiber fraction (78-80 vol.%) T1000G/RS-14A composite cylinders were wet-filament wound and cured in an inert (N_2) atmosphere

- Excellent ring tensile strengths
 - Highest average cylinder strength: 4641 MPa (673 ksi)
 - Highest individual ring strengths: 4826 MPa (700 ksi)
- Good transverse properties for such high fiber fraction composites
- Excellent strength retention at elevated temperatures

APPLICATIONS

Potential applications for these materials include flywheel energy storage systems for space and satellite structures